One-way ANOVA Power Analysis | G*Power Data Analysis Examples (2024)

NOTE: This page was developed using G*Power version 3.0.10. Youcan download the current version of G*Power fromhttp://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/ . Youcan also find help files, the manual and the user guide on this website.

Introduction

Power analysis is the name given to the process for determining the samplesize for a research study. The technical definition of power is that it is theprobability of detecting a “true” effect when it exists. Many students thinkthat there is a simple formula for determining sample size for every researchsituation. However, the reality it that there are many research situations thatare so complex that they almost defy rational power analysis. In most cases,power analysis involves a number of simplifying assumptions, in order to makethe problem tractable, and running the analyses numerous times with differentvariations to cover all of the contingencies.

In this unit we will try to illustrate the power analysis process using asimple four group design.

Description of the experiment

We wish to conduct a study in the area of mathematics education involvingdifferent teaching methods to improve standardized math scores in localclassrooms. The study will include four different teaching methods and usefourth grade students who are randomly sampled from a large urban schooldistrict and are then random assigned to the four different teaching methods.

Here are the four different teaching methods which will be examined: 1) Thetraditional teaching method where the classroom teacher explains the conceptsand assigns homework problems from the textbook; 2) the intensive practicemethod, in which students fill out additional work sheets both before and afterschool; 3) the computer assisted method, in which students learn math conceptsand skills from using various computer based math learning programs; and, 4) thepeer assistance learning method, which pairs each fourth grader with a fifthgrader who helps them learn the concepts followed by the student teaching thesame material to another student in their group.

Students will stay in their math learning groups for an entire academic year. At the end of the Spring semester all students will take the Multiple MathProficiency Inventory (MMPI). This standardized test has a mean for fourthgraders of 550 with a standard deviation of 80.

The experiment is designed so that each of the four groups will have the samesample size. One of the important questions we need to answer in designing thestudy is, how many students will be needed in each group?

The power analysis

In order to answer this question, we will need to make some assumptions andsome educated guesses about the data. First, we will assume that the standarddeviation for each of the four groups will be equal and will be equal to thenational value of 80. Further, because of prior research, we expect that thetraditional teaching group (Group 1) will have the lowest mean score and thatthe peer assistance group (Group 4) will have the highest mean score on the MMPI.In fact, we expect that Group 1 will have a mean of 550 and that Group 4 willhave mean that is greater by 1.2 standard deviations, i.e., the mean will equalat least 646. For the sake of simplicity, we will assume that the means of theother two groups will be equal to the grand mean.

To begin, the program should be set to the F family of tests, to a one-wayANOVA, and to the ‘A Priori’ power analysis necessary to identify sample size. From there we need the following information: the alpha level, the power, thenumber of groups and the effect size.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (1)

The latter can be determined via the ‘Determine’ button, which calls up amenu requesting the number of groups, their shared standard deviation, and themean of each group. All of our known variables can now be inputted. Asstated above, there are four groups, a=4. We will set alpha = 0.05. We alreadyhave the mean = 550 for the lowest group and the mean = 646 for the highestgroup. We will first set the means for the two middle groups to be the grandmean. Based on this setup and the assumption that the common standard deviationis equal to 80, we can do some simply calculation to see that the grand meanwill be 598 [Note: “SD σ within each group” is 1 in the image below, but should be set to 80 before hitting “Calculate” to follow this specific analysis].

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (2)

Let’s set the power to be .8 and calculate the corresponding sample size.A click of ‘Calculate and transfer to main window’, followed by the mainwindow’s ‘Calculate’ button produces the following result.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (3)

A total of 68 students will be required for the test; 17 for each class. Now, ifwe want to see how sample size affects power, we can click ‘X-Y plot for a rangeof values’, provide a range of sample sizes, and follow a graph with power asthe dependent variable. Simply set power as a function of sample size withan appropriate set of sizes, here 40 students through 200 in steps of 10.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (4)

So we see that when we have 100 subjects (25 in each group), we will havepower of .951.

In the setup above, we have arranged so that the two middle groups will havemeans equal to the grand mean. In general, the means for the two middle groupscan be anything in between the extreme values. If you have a good idea on whatthese means should be, you might want to make use of this piece of informationin your power analysis. Let’s say, for instance, that the means for the twomiddle groups should be 575 and 635. We will compute the power for a sequence ofsample sizes as we did earlier.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (5)

Inputting the new effect size into the plot, we get:

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (6)

So we see that to produce a power of .8 we need fewer subjects than in theearlier case when the two middle groups have the grand mean as their means. Thisshould be expected since the power here is the overall power of the F test forANOVA, and since the means are more polarized towards the two extreme ends, itis easier to detect the group effect.

Effect size

The difference of the means between the lowest group and the highest groupover the common standard deviation is a measure of effect size. In thecalculation above, we have used 550 and 646 with common standard deviation of80. This gives effect size of (646-550)/80 = 1.2. This is considered to be alarge effect size. Let’s say now we have a medium effect size of .75. What doesthis translate into in terms of groups means? Well, we can always use 550 forthe lowest group. The mean for the highest group will be .75*80 + 550 = 610. Let’s assume the two middle groups have the means of grand mean, say g. Then wehave (550 + g + g + 610) / 4 = g. This gives us g = (550 + 610)/2 = 580. Let’snow redo our sample size calculation with this set of means.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (7)

So we see that at a power of .8, we have a sample size of 160, or 40 for eachgroup.

What about a small effect size; say, .25? We can do the same calculation aswe did previously. The mean for each of the groups will be 550 , 560, 560 and570.

One-way ANOVA Power Analysis | G*Power Data Analysis Examples (8)

Now the sample size goes way up.

Discussion

The sample size calculation is based a number of assumptions. One of these isthe normality assumption for each group. We also assume that the groups have thesame common variance. As our power analysis calculation is rooted in theseassumptions it is important to remain aware of them.

We have also assumed that we have knowledge of the magnitude of effect we aregoing to detect which is described in terms of group means. Whenwe are unsure about the groups means, we should use more conservative estimates. For example, we might not have a good idea on the two means for the two middlegroups, then setting them to be the grand mean is more conservative than settingthem to be something arbitrary.

Here are the sample sizes per group that we have come up with in our poweranalysis: 17 (best case scenario), 40 (medium effect size), and 350 (almost theworst case scenario). Even though we expect a large effect, we will shoot for asample size of between 40 and 50. This will help ensure that we haveenough power in case some of the assumptions mentioned above are not met or incase we have some incomplete cases (i.e., missing data).

One-way ANOVA Power Analysis |  G*Power Data Analysis Examples (2024)

FAQs

How to do power analysis for one-way ANOVA? ›

test in R to do the power analysis. This function needs the following information in order to do the power analysis: 1) the number of groups, 2) the between group variance 3) the within group variance, 4) the alpha level and 5) the sample size or power. As stated above, there are four groups, a=4.

What is a one-way ANOVA with examples? ›

For example, you can use a one-way ANOVA to determine whether exam performance differed based on test anxiety levels amongst students (i.e., your dependent variable would be "exam performance", measured from 0-100, and your independent variable would be "test anxiety levels", which has three groups: "low stressed ...

What is the power of the one-way ANOVA? ›

The power of a one-way ANOVA is the probability that the test will determine that the maximum difference between group means is statistically significant, when that difference truly exists.

How do you Analyse data using one-way ANOVA? ›

Interpret the key results for One-Way ANOVA
  1. Step 1: Determine whether the differences between group means are statistically significant.
  2. Step 2: Examine the group means.
  3. Step 3: Compare the group means.
  4. Step 4: Determine how well the model fits your data.

When should you use a one-way ANOVA analysis? ›

One-way ANOVA is typically used when you have a single independent variable, or factor, and your goal is to investigate if variations, or different levels of that factor have a measurable effect on a dependent variable.

What are the three conditions required for one-way ANOVA? ›

Assumptions for One-Way ANOVA Test

There are three primary assumptions in ANOVA: The responses for each factor level have a normal population distribution. These distributions have the same variance. The data are independent.

When to use ANOVA example? ›

You might use ANOVA when you want to test a particular hypothesis between groups, determining – in using one-way ANOVA – the relationship between an independent variable and one quantitative dependent variable. An example could be examining how the level of employee training impacts customer satisfaction ratings.

How do you write a one-way ANOVA result? ›

When reporting the results of an ANOVA, include a brief description of the variables you tested, the F value, degrees of freedom, and p values for each independent variable, and explain what the results mean.

Why use G*Power to calculate sample size? ›

The null and alternative hypothesis, effect size, power, alpha, type I error, and type II error should be described when calculating the sample size or power. G*Power is recommended for sample size and power calculations for various statistical methods (F, t, χ2, Z, and exact tests), because it is easy to use and free.

What is effect size f in G*Power? ›

The f effect size statistic, used by G*Power, is the standardized average dispersion among the group means. Cohen also proposed the delta (δ) ANOVA effect size statistic, which is the difference between the largest and smallest population means divided by the within-population standard deviation.

What is the number of predictors in G*Power? ›

The total number of predictors is the sum of these variables. For example, if you have 3 independent variables, 1 interaction term, and 2 control variables, the total number of predictors is 3 + 1 + 2 = 6. Enter this number into G*Power under the "Number of predictors" field when performing your power analysis.

What is one-way ANOVA with an example? ›

One-Way ANOVA ("analysis of variance") compares the means of two or more independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different. One-Way ANOVA is a parametric test.

How to determine sample size for one-way ANOVA? ›

The actual sample size that you need depends on the number of groups in your data, as follows:
  1. If you have 2-9 groups, the sample size for each group should be at least 15.
  2. If you have 10-12 groups, the sample size for each group should be at least 20.

What is G in an ANOVA? ›

G = the sum of all the scores in the study (the grand total).

What does power mean in ANOVA? ›

In this section we return to 2 basic concepts which bear on interpreting ANOVA results: power and effect size. Power is the ability to detect an effect if there is one. Expressed as a quantity, power ranges from 0 to 1, where . 95 would mean a 5% chance of failing to detect an effect that is there.

What is the power Explorer for ANOVA? ›

Power Explorer for ANOVA Profiler

Enables you to solve for a sample size, within group standard deviation, or maximum difference in means. Specifies the probability of rejecting the null hypothesis when it is false. With all other parameters fixed, power increases as sample size increases.

How do you present one-way ANOVA results? ›

Report the result of the one-way ANOVA (e.g., "There were no statistically significant differences between group means as determined by one-way ANOVA (F(2,27) = 1.397, p = . 15)"). Not achieving a statistically significant result does not mean you should not report group means ± standard deviation also.

Top Articles
#StateToTheShow Update: August 16 - Mississippi State
Is the Lauren Boebert Tattoo Photo Real or Fake? Tribal Ink Explained - Films/Movies & reviews news - NewsLocker
Evil Dead Movies In Order & Timeline
How To Fix Epson Printer Error Code 0x9e
Po Box 7250 Sioux Falls Sd
13 Easy Ways to Get Level 99 in Every Skill on RuneScape (F2P)
Craigslist Benton Harbor Michigan
Don Wallence Auto Sales Vehicles
OSRS Fishing Training Guide: Quick Methods To Reach Level 99 - Rune Fanatics
Noaa Weather Philadelphia
Graveguard Set Bloodborne
Irving Hac
You can put a price tag on the value of a personal finance education: $100,000
Myunlb
Globe Position Fault Litter Robot
Full Range 10 Bar Selection Box
WWE-Heldin Nikki A.S.H. verzückt Fans und Kollegen
Accuradio Unblocked
Fear And Hunger 2 Irrational Obelisk
Used Drum Kits Ebay
Niche Crime Rate
Aspen Mobile Login Help
Pay Boot Barn Credit Card
Tips on How to Make Dutch Friends & Cultural Norms
Why do rebates take so long to process?
Craigslist Lewes Delaware
8005607994
Churchill Downs Racing Entries
Cor Triatriatum: Background, Pathophysiology, Epidemiology
Tamil Movies - Ogomovies
Astro Seek Asteroid Chart
Diggy Battlefield Of Gods
Mrstryst
Vistatech Quadcopter Drone With Camera Reviews
Exploring The Whimsical World Of JellybeansBrains Only
11 Pm Pst
拿到绿卡后一亩三分地
Devotion Showtimes Near The Grand 16 - Pier Park
Registrar Lls
Questions answered? Ducks say so in rivalry rout
Gym Assistant Manager Salary
Rush Copley Swim Lessons
Elven Steel Ore Sun Haven
Frontier Internet Outage Davenport Fl
Jigidi Free Jigsaw
Research Tome Neltharus
R Detroit Lions
Strange World Showtimes Near Atlas Cinemas Great Lakes Stadium 16
Best brow shaping and sculpting specialists near me in Toronto | Fresha
Latest Posts
Article information

Author: Jonah Leffler

Last Updated:

Views: 5992

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Jonah Leffler

Birthday: 1997-10-27

Address: 8987 Kieth Ports, Luettgenland, CT 54657-9808

Phone: +2611128251586

Job: Mining Supervisor

Hobby: Worldbuilding, Electronics, Amateur radio, Skiing, Cycling, Jogging, Taxidermy

Introduction: My name is Jonah Leffler, I am a determined, faithful, outstanding, inexpensive, cheerful, determined, smiling person who loves writing and wants to share my knowledge and understanding with you.